LIBERTY PAPER SET

STD. 10 : Mathematics (Basic) [N-018(E)]

Full Solution

Time: 3 Hours

ASSIGNTMENT PAPER 5

Section-A

1. (A) Infinite **2.** (B) $\sqrt{x^2 + y^2}$ **3.** (A) $a_n = a + (n - 1)d$ **4.** (B) $D = b^2 - 4ac$ **5.** (B) $tan\theta$ **6.** (B) 2 **7.** 5 **8.** downward open parabola **9.** - 1.5% **10.** 1 **11.** One **12.** 2.45 **13.** True **14.** True **15.** True **16.** True **17.** 14 **18.** 60° **19.** $\frac{1}{4}$ **20.** 40 **21.** (c) $\frac{1}{3}\pi r^2h$ **22.** (a) πr^2h **23.** (b) $\frac{\pi r^2\theta}{360}$ **24.** (a) $\frac{\pi r\theta}{180}$

Section-B

25. Suppose the bionomial polynomial $ax^2 + bx + c$ of zeroes is α and β .

 $\therefore \alpha + \beta = -3 \text{ and } \alpha\beta = 2$

$$\therefore -\frac{b}{a} = \frac{-3}{1} \text{ and } \frac{c}{a} = \frac{2}{1}$$
$$\therefore a = 1, b = 3, c = 2$$

So, one bionomial polynomial which fits the given conditions is $x^2 + 3x + 2$. You can check that any other bionomial polynomial that fits these conditions will be of the form $k(x^2 + 3x + 2)$, where k is real.

26. $p(x) = 2x^2 + 6x + 3$

a = 2, b = 6, c = 3

Sum of zeroes = $\frac{-b}{a} = \frac{-6}{2} = -3$

Product of zeroes = $\frac{c}{a} = \frac{3}{2}$

 $2x^2 - 6x + 3 = 0$

 $\therefore a = 2, b = -6 \text{ and } c = 3$

$$b^2 - 4ac = (-6)^2 - 4(2)(3) = 36 - 24 = 12$$

Here $b^2 - 4ac > 0$, therefore, there are distinct real roots exist for given equation.

Now,
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$\therefore x = \frac{-(-6) \pm \sqrt{12}}{2 \times 2}$$
$$\therefore x = \frac{6 \pm 2\sqrt{3}}{4}$$
$$\therefore x = \frac{3 \pm \sqrt{3}}{2}$$

Therefore, roots of given equation : $\frac{3+\sqrt{3}}{2}$, $\frac{3-\sqrt{3}}{2}$

28.
$$a = 5, d = 3, a_n = 50, n =$$

 $a_n = a + (n - 1)d$
 $\therefore 50 = 5 + (n - 1)3$
 $\therefore 50 - 5 = (n - 1)3$
 $\therefore 45 = (n - 1)3$
 $\therefore n - 1 = \frac{45}{3}$
 $\therefore n - 1 = 15$
 $\therefore n = 16$
29. $a = 10, d = 7 - 10 = -3, n = 30, a_{30} =$ _____
 $a_n = a + (n - 1)d$
 $\therefore a_{30} = 10 + (30 - 1) (-3) = 10 + (29)(-3) = 10 - 87 = -77$
 $\therefore a_{30} = -77$

30. Let the given points be A (-5, 7) & B (-1, 3)

:. AB =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

= $\sqrt{(-5 + 1)^2 + (7 - 3)^2}$
= $\sqrt{16 + 16} = \sqrt{32} = 4\sqrt{2}$

Thus, the distance between the given points is $4\sqrt{2}$.

31. Let, the given points be A (5, -2), B (6, 4) & C (7, -2).

AB =
$$\sqrt{(5-6)^2 + (-2-4)^2} = \sqrt{1+36} = \sqrt{37}$$

BC = $\sqrt{(6-7)^2 + (4+2)^2} = \sqrt{1+36} = \sqrt{37}$

$$3C = \sqrt{(6-7)^2 + (4+2)^2} = \sqrt{1+36} = \sqrt{37}$$

AC =
$$\sqrt{(5-7)^2 + (-2+2)^2} = \sqrt{4+0} = \sqrt{4} = 2$$

Here, since PQ = QR in ΔPQR is an isosceles triangle,

thus, the points (5, -2), (6, 4) and (7, -2) are the vertices of the isosceles triangle.

K

32. A
B
$$\sin A = \frac{3}{4}$$

In right angled \triangle ABC, \angle B = 90°

$$\sin A \quad \frac{BC}{AC} = \frac{3}{4}$$

 $\therefore \quad \frac{BC}{3} = \frac{AC}{4} \quad k, \ k = \text{Positive Real Number}$
 $\therefore \quad BC = 3k, \ AC = 4k$

According to pythagoras

$$AB^{2} = AC^{2} - BC^{2}$$

$$AB^{2} = (4k)^{2} - (3k)^{2}$$

$$AB^{2} = 16k^{2} - 9k^{2}$$

$$AB^{2} = 7k^{2}$$

$$AB^{2} = 7k^{2}$$

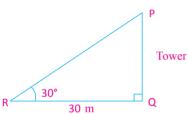
$$AB = \sqrt{7} k$$

$$\cos A = \frac{AB}{AC} = \frac{\sqrt{7}k}{4k} = \frac{\sqrt{7}}{4}$$

$$\tan A = \frac{\sin A}{\cos A} = \frac{\frac{3}{4}}{\frac{\sqrt{7}}{4}} = \frac{3}{\sqrt{7}}$$

33. $2tan^245^\circ + cos^230^\circ - sin^260^\circ$

$$= 2(1)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2} - \left(\frac{\sqrt{3}}{2}\right)^{2}$$
$$= 2 + \frac{3}{4} - \frac{3}{4}$$
$$= 2$$



Here, PQ represents the tower, P is the top of the tower and point R is the point of observation.

In \triangle PQR, $\angle Q = 90^{\circ}$, $\angle R = 30^{\circ}$ and QR = 30 m.

$$\therefore \quad \tan R = \frac{PQ}{QR}$$
$$\therefore \quad \tan 30^\circ = \frac{PQ}{30}$$
$$\therefore \quad \frac{1}{\sqrt{3}} = \frac{PQ}{30}$$
$$\therefore \quad PQ = \frac{30}{\sqrt{3}} = 10\sqrt{3} \text{ m}$$

Hence, the height of the tower is $10\sqrt{3}$ m.

35.

Suppose, the side length of the cube be x.

$$\therefore \text{ Volume of cube} = x^3$$

$$\therefore 64 = x^3$$

$$\therefore x = 4 \text{ cm}$$

$$l = 2x = 2 \times 4 = 8 \text{ cm}, b = x = 4 \text{ cm and}$$

$$h = x = 4 \text{ cm}$$

$$\therefore \text{ Area of rectangle formed} = 2 (lb + bh + hl)$$

$$= 2 (8 \times 4 + 4 \times 4 + 4 \times 8)$$

$$= 2 (32 + 16 + 32)$$

$$= 2(80)$$

$$= 160 \text{ cm}^2$$

36. r = h = 7 cm

Volume of cylinder = $\pi r^2 h$

$$= \frac{22}{7} \times 7^2 \times 7$$
$$= 22 \times 49$$
$$= 1078 \text{ cm}^3$$

37. We have,

38.

Mode Z =
$$l + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right] \times h$$

= $40 + \left[\frac{7 - 3}{2(7) - 3 - 6}\right] \times 15$
= $40 + \left[\frac{4}{14 - 9}\right] \times 15$
= $40 + \left(\frac{4}{5}\right) \times 15$
= $40 + \left(\frac{4 \times 5 \times 3}{5}\right)$
= $40 + (4 \times 3)$
= $40 + 12$
Z = 52
 $\sqrt{2}x + \sqrt{3}y = 0$...(1)
 $\therefore x = \frac{-\sqrt{3}y}{\sqrt{2}}$...(2)
 $\sqrt{3}x - \sqrt{8}y = 0$...(3)
Put value of equation (2) in equation (3),
 $\sqrt{3}x - \sqrt{8}y = 0$

$$\therefore \sqrt{3} \left(\frac{-\sqrt{3}y}{\sqrt{2}}\right) - \sqrt{8}y = 0$$

$$\therefore \frac{-3y}{\sqrt{2}} - \sqrt{8}y = 0$$

$$\therefore \frac{-3y - 4y}{\sqrt{2}} = 0$$

$$\therefore -7y = 0$$

$$\therefore y = 0$$

Put y = 0 in equation (2)

$$x = \frac{-\sqrt{3}y}{\sqrt{2}}$$

$$\therefore x = \frac{-\sqrt{3}(0)}{\sqrt{2}}$$

$$\therefore x = 0$$

Therefore, the solution is : x = 0, y = 0

39. Let us assume that, Bhavin's present age = xVrutik's present age = yFive years ago, Bhavin = x - 5Vrutik = y - 5 \therefore As per condition (x - 5) = 3 (y - 5) $\therefore x - 5 = 3y - 15$ $\therefore x - 3y = -15 + 5$ $\therefore x - 3y = -10$...(1) 10 years from now, Bhavin will be x + 0 & Vrutik will be y + 10As per condition (x + 10) = 2 (y + 10) $\therefore x + 10 = 2y + 20$ $\therefore \quad x - 2y = 20 - 10$ $\therefore x - 2y = 10$...(2) Subtract (2) from (1), x - 3y = -10x - 2y = 10_ + _ + $\therefore -y + 20 = 0$ \therefore y = -20 y = 20Put y = 20 in eqn (1), x - 3y = -10 $\therefore x - 3(20) = -10$ $\therefore x - 60 = -10$ $\therefore x = -10 + 60$ $\therefore x = 50$ Bhavin's present age = 50 years, Vrutik's present age = 20 years. **40.** $a_{12} = 37, d = 3, a =$ ____, $S_{12} =$ _____ Now, $a_{12} = 37$ $\therefore a + 11d = 37$ $\therefore a + 11(3) = 37$ $\therefore a + 33 = 37$

$$\therefore \quad a = 37 - 33$$

$$\therefore a = 4$$

$$S_n = \frac{n}{2} [2a + (n - 1)d]$$

∴ $S_{12} = \frac{12}{2} [2(4) + (12 - 1)(3)]$
= 6 [8 + 33]
= 6 × 41
∴ $S_{12} = 246$

41. Here, A (6, 1), B (8, 2), C (9, 4) and D (P, 3) are the vertices of the parallelogram ABCD.

:. Co-ordinates from the midpoint of the diagonal AC = Co-ordinates from the midpoint of the diagonal BD

$$\therefore \quad \left(\frac{6+9}{2}, \frac{1+4}{2}\right) = \left(\frac{8+P}{2}, \frac{2+3}{2}\right)$$
$$\therefore \quad \left(\frac{15}{2}, \frac{5}{2}\right) = \left(\frac{8+P}{2}, \frac{5}{2}\right)$$
$$\therefore \quad \frac{15}{2} = \frac{8+P}{2}$$
$$\therefore \quad 15 = 8+P$$
$$\therefore \quad P = 7$$

42. Let the point P on x-axis be (x, 0) which is at equal distances from points A (2, -5) and B (-2, 9).

 $\therefore PA = PB$ $\therefore PA^{2} = PB^{2}$ $\therefore (x - 2)^{2} + (0 + 5)^{2} = (x + 2)^{2} + (0 - 9)^{2}$ $\therefore x^{2} - 4x + 4 + 25 = x^{2} + 4x + 4 + 81$ $\therefore -4x - 4x = 4 + 81 - 4 - 25$ $\therefore -8x = 56$

$$\therefore x = -7$$

Hence, the required point on the x-axis is (-7, 0).

43. Given : A circle with centre O, a point P lying outside the circle with two tangents PQ, PR on the circle from P. To prove : PQ = PR

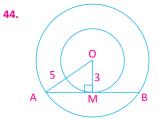
Proof : Join OP, OQ and OR. Then \angle OQP and \angle ORP are right angles because these are angles between the radii and tangents and according to theorem 10.1 they are right angles.

Now, in right triangles OQP and ORP,

OQ = OR(Radii of the same circle)OP = OP(Common) $\angle OQP = \angle ORP$ (Right angle)

Therefore, $\triangle \text{ OQP} \cong \triangle \text{ ORP}$ (RHS)

This gives, PQ = PR (CPCT)



Here, chord AB of \odot (0, 5) touches. (0, 3) at point M. Therefore, OM \perp AB and M is the midpoint of AB. In \triangle OMA; \angle OMA = 90° \therefore AM² + OM² = OA² (Pythagoras Theorem)

- : $AM^2 + (3)^2 = (5)^2$
- $\therefore AM^2 + 9 = 25$
- : $AM^2 = 25 9$
- $\therefore AM^2 = 16$
- ∴ AM = 4

But, $AB = 2AM = 2 \times 4$

Hence, the length of chord AB is 8 cm.

45.

Class Interval	No. of families (<i>fi</i>)	<i>x</i> _i	u _i	f _i u _i
10 – 25	2	17.5	- 2	- 4
25 – 40	3	32.5	- 1	- 3
40 – 55	7	47.5 <i>= a</i>	0	0
55 – 70	6	62.5	1	6
70 – 85	6	77.5	2	12
85 - 100	6	92.5	3	18
Total	30			29

Mean
$$\bar{x} = a + \frac{\sum fiui}{\sum fi} \times h$$

 $\therefore \quad \bar{x} = 47.5 + \frac{29 \times 15}{30}$
 $\therefore \quad \bar{x} = 47.5 + 14.5$
 $\therefore \quad \bar{x} = 62$

46. Total number of letters = 5 + 8 + 1 = 14

(i) Suppose event A drawn letter is red.

$$\therefore P(A) = \frac{\text{Number of red letter}}{\text{Total number of letters}}$$
$$\therefore P(A) = \frac{5}{14}$$

(ii) Suppose event B drawn letter is white.

$\therefore P(B) =$	Number of white letter			
	Total number of letters			

$$\therefore P(B) = \frac{8}{14} = \frac{4}{7}$$

47.

(iii) Suppose event C drawn letter is not green.

$$\therefore P(C) = \frac{\text{Number of is not green letter}}{\text{Total number of letters}}$$
$$\therefore P(C) = \frac{13}{14}$$

Given : In Δ PQR, a line parallel to side QR intersects PQ and PR at M and N respectively.

To prove : $\frac{PM}{MQ} = \frac{PN}{NR}$ Proof : Join QN and RM and also draw

 $MY \perp PR \text{ and } NX \perp PQ$

Then, PMN = $\frac{1}{2} \times PM \times NX$,

 $QMN = \frac{1}{2} \times MQ \times NX,$

 $PMN = \frac{1}{2} \times PN \times MY$ and

 $MNR = \frac{1}{2} \times NR \times MY$

$$\therefore \frac{PMN}{QMN} = \frac{\frac{1}{2} \times PM \times NX}{\frac{1}{2} \times MQ \times NX} = \frac{PM}{MQ} \qquad \dots (1)$$

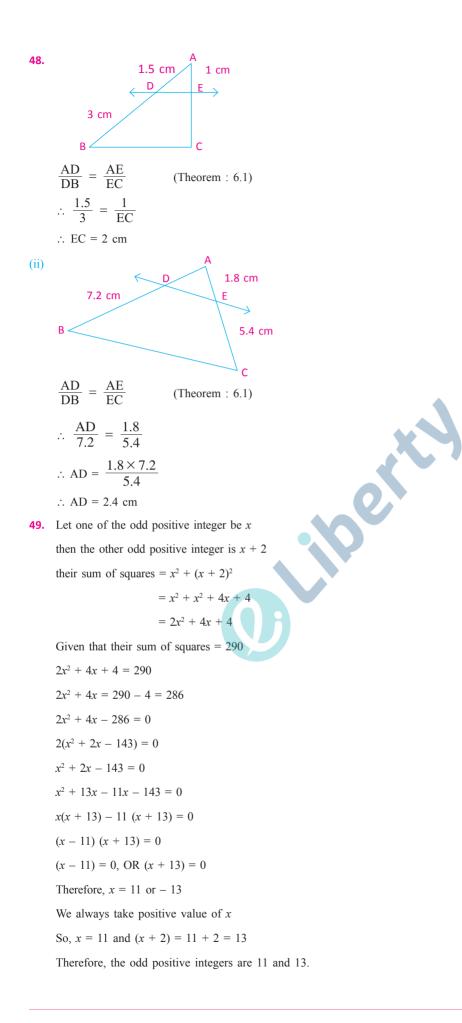
$$\therefore \frac{PMN}{MNR} = \frac{\frac{1}{2} \times PN \times MY}{\frac{1}{2} \times NR \times MY} = \frac{PN}{NR} \qquad ...(2)$$

Now, Δ QMN and Δ MNR are triangles on the same base MN and between the parallel QR and MN.

 $\therefore \text{ QMN} = \text{MNR} \qquad ...(3)$

Hence from eq^n , (1), (2) and (3)

 $\frac{PM}{MQ} = \frac{PN}{NR}$



Here,
$$a_3 = 5$$

 $\therefore a + 2d = 5$...(1)
 $a_7 = 9$
 $\therefore a + 6d = 9$...(2)

 $\therefore a + 6d = 9$

50.

Subtract equation (2) by (1),

(a + 2d) - (a + 6d) = 5 - 9 $\therefore a + 2d - a - 6d = -4$ $\therefore - 4d = -4$ $\therefore d = 1$

Put d = 1 in equation (1),

$$a + 2d = 5$$

 $\therefore a + 2(1) = 5$
 $\therefore a + 2 = 5$
 $\therefore a = 3$
 $\therefore a_1 = a = 3$
 $a_2 = a + d = 3 + 1 = 4$
 $a_3 = a + 2d = 3 + 2(1) = 3 + 2 = 5$
 $a_4 = a + 3d = 3 + 3(1) = 3 + 3 = 6$

Hence, the required AP is 3, 4, 5, 6, 7,

51. Here, maximum class frequency is 23 which belong to class interval 35-45.

 \therefore l = lower limit of modal class = 35

- h = class size = 10
- frequency of modal class = 23 $f_1 =$
- frequency of class preceding the modal class = 21 f_0 =
- f_2 = frequency of class succeeding the modal class = 14

Mode, $Z = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$ $\therefore Z = 35 + \left(\frac{23 - 21}{2(23) - 21 - 14}\right) \times 10$ $\therefore Z = 35 + \frac{2 \times 10}{11}$ $\therefore Z = 35 + 1.82$

$$\therefore Z = 36.82 \text{ (Approx)}$$

-	2	
5	Z	
-	-	1

Class intervals	Frequency	Cumulative frequency
0 - 100	2	2
100 - 200	5	7
200 - 300	x	7 + x
300 - 400	12	19 + x
400 - 500	17	36 + x
500 - 600	20	56 + x
600 - 700	у	56 + x + y
700 - 800	9	65 + x + y
800 - 900	7	72 + x + y
900 - 1000	4	76 + x + y

It is given that n = 100

$$\frac{n}{2} = \frac{100}{2} = 50$$

$$\therefore 76 + x + y = 100$$

$$\therefore x + y = 24$$

The median is 525, which lies in the class 500 - 600.

oertv

$$l = 500$$
$$cf = 36 + x$$
$$f = 20$$
$$h = 100$$

Median M =
$$l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$$

 $\therefore 525 = 500 + \left(\frac{50 - 36 - x}{20}\right) \times 100$
 $\therefore 525 - 500 = (14 - x)5$
 $\therefore \frac{25}{5} = 14 - x$
 $\therefore 5 = 14 - x$
 $\therefore x = 14 - 5$
 $\therefore x = 9$

Now, x + y = 24

$$\therefore 9 + y = 24$$

$$\therefore y = 15$$

53. Here, the number of possible outcomes = 52

(i) There are 4 aces in a deck. Let E be the event 'the card is an ace'. The number of outcomes favourable to

E = 4

Therefore,
$$P(E) = \frac{4}{52} = \frac{1}{13}$$

(ii) Let F be the event 'card drawn is not an ace'. The number of possible outcomes = 48
(52 - 4 = 48)

Therefore,
$$P(F) = \frac{48}{52} = \frac{12}{13}$$

(iii) Let G be the event 'the card is a red ace'.

There are 1 red ace in a deck.

$$\therefore P(G) = \frac{1}{52}$$

(iv) Let H be the event 'the card is a black ace'.

There are 1 black ace in a deck.

$$\therefore P(H) = \frac{1}{52}$$

54. (i) Total number of bulbs = 20

Total number of defective bulbs = 4

 \therefore Total number of non-defective bulbs = 20 - 4 = 16

Suppose event A is drawing a defective bulbs

$$\therefore P(A) = \frac{\text{Number of defective bulbs}}{\text{Total number of bulbs}} = \frac{4}{20}$$
$$\therefore P(A) = \frac{1}{5}$$

(ii) Now bulb in is not defective and is not replaced

Therefore, total number of non-defective bulbs is 15 and total number of defective bulbs is 4. Hence, total bulbs 19(15 + 4).

 \therefore Remaining number of bulbs = 19

Suppose event B is drawing bulb is not defective.

$$\therefore P(B) = \frac{\text{Number of non-defective bulbs}}{\text{Total number of bulbs}}$$

 $\therefore P(B) = \frac{15}{19}$